WeBritish.com
 We British.com
Being British
Menu

British Achievements

Search:
66 Records Found

Sir Robert Watson-Watt



Sir Robert Alexander Watson-Watt, FRS (April 13, 1892–December 5, 1973), is considered by many to be the "inventor of radar". (Radar development was first started elsewhere - see History of radar). However this should not lessen the role that Watson-Watt played in the development of radar, creating the first workable system, turning the theory into one of the most important war-winning weapons.

Born in Brechin in Angus, Scotland, he was a descendant of James Watt, the famous engineer and inventor of the practical steam engine.

After attending public school in Brechin, he was accepted to University College, Dundee (which was then part of the University of St Andrews but became the University of
Dundee in 1967). He graduated with a BSc in engineering in 1912, and was offered an assistantship by Professor William Peddie. It was Peddie who encouraged him to study radio, or "wireless telegraphy" as it was then known.

In 1915 Watson-Watt wanted a job with the War Office, but nothing obvious was available in communications. Instead he joined the Meteorological Office, who were interested in his ideas on the use of radio for the detection of thunderstorms. Lightning gives off a radio signal as it ionizes the air, and he planned on detecting this signal in order to warn pilots of approaching thunderstorms.

His early experiments were successful in detecting the signal, and he quickly proved to be able to do so at long ranges. Two problems remained however. The first was locating the signal, and thus the direction to the storm. This was solved with the use of a directional antenna, which could be manually turned to maximize (or minimize) the signal, thus "pointing" to the storm. Once this was solved the equally difficult problem of actually seeing the fleeting signal became obvious, which he solved with the use of a cathode-ray oscilloscopes with a long-lasting phosphor. Such a system represented a significant part of a complete radar system, and was in use as early as 1923. It would, however, need the addition of a pulsed transmitter and a method of measuring the time delay of the received radio echos, and that would in time come from work on ionosondes.

At first he worked at the Aldershot Wireless Station of Air Ministry Meteorological Office. Then in 1924 when the War Department gave notice that they wished to re-occupy their Aldershot site, he moved to Ditton Park near Slough (to the west of London). The National Physical Laboratory (NPL) already had a research station there, and in 1927 they were amalgamated as the Radio Research Station, with Watson-Watt in charge. After a further re-organisation in 1933, Watson-Watt became Superintendent of the Radio Department of NPL in Teddington.

On February 12, 1935, Watson-Watt sent a memo of the proposed system to the Air Ministry, entitled Detection and location of aircraft by radio methods. Although not as exciting as a death-ray, the concept clearly had amazing potential and Watson-Watt was promptly asked for a demonstration. This was ready by February 26, and consisted of two receiving antennas located about ten kilometers away from one of the BBC's shortwave broadcast antennas at Daventry. Signals travelling directly from the station were filtered out, and a Heyford bomber flown around the site (passive radar). Such was the secrecy that only three people witnessed the test, Watson-Watt, his assistant Arnold Wilkins, and a single member of the committee, A.P. Rowe. The demonstration was a success: on several occasions a clear signal was seen from the bomber. Most importantly, the prime minister, Stanley Baldwin, was kept quietly informed of radar's progress.

Only two weeks later Wilkins left the Radio Research Station with a small party, including Edward George Bowen, to start further research at Orfordness. On April 2, 1935, Watson-Watt was granted a patent for radar. By June they were detecting aircraft at 27 kilometres, which was enough to stop all work on competing sound-based detection systems. By the end of the year the range was up to 100 kilometres, at which point plans were made in December to set up five stations covering the approaches to London.

One of these stations was to be located on the coast near Orfordness, and Bawdsey Research Station was set up there to become the main centre for all radar research. They soon conducted "full scale" tests of a system that would soon be known as Chain Home, attempting to intercept a bomber by radar direction. The tests were a massive failure, with the fighter only seeing the bomber after it had passed its target. The problem was not the radar, but the flow of information from the trackers to the fighters, which took many steps and was very slow. Watson-Watt immediately attacked this problem, and set up the system with several layers of reporting that were eventually sent to a single large room for mapping. Observers watching the maps would then tell the fighter groups what to do via direct communications.

By 1937 the first three stations were ready, and his new reporting system put to the test. The results were clearly successful and an immediate order for an additional 20 stations was sent out. By the start of World War II 19 were ready to play a key part in the Battle of Britain, and by the end of the war over 50 had been built. The Germans were aware of the construction of Chain Home but were not sure of their purpose. They tested their theories with a flight of LZ 130, the GRAF Zeppelin II, but concluded the stations were a new long-range naval communications system.

Even as early as 1936 it was realized that the Luftwaffe would turn to night bombing if the day campaign did not go well, and Watson-Watt had put another of the staff from the Radio Research Station, Edward Bowen, in charge of developing a radar that could be carried by a fighter. Night time visual detection of a bomber was good to about 300 m, and the existing CH systems simply didn't have the accuracy needed to get the fighters that close. Bowen decided that an airborne radar should not exceed 200 pounds (90 kg) in weight, 8 ft³ (230 L) in volume, and require no more than 500 watts of power. To reduce the drag of the antennas the operating wavelength could not be much greater than one metre, difficult for the day's electronics. Nevertheless such a system was perfected by 1940, and were instrumental in eventually ending "The Blitz" of 1941. Bowen also fitted airborne radar to maritime patrol aircraft and this eventually reduced the threat from submarines.


<<< Back